Abstract

The general expression for the effective pairing Hamiltonian is proposed to construct the multicomponent Ginzburg-Landau free energy functional for strongly anisotropic layered superconductors. Beside the one-particle interlayer direct tunneling, the coupling between layers occurs due to direct and exchange type attractive interaction in the particle-hole channel, also the attractive electron-electron \hbox{(e-e)} interaction in the particle-particle channel. Interlayer pairings in the particle-hole channel, as well as in the particle-particle channel are shown to enhance the critical temperature in the BCS approximation. The upper critical magnetic field H_{C2} is studied for the superconductors under investigation. The interaction in the particle-particle channel is sensitive to a magnetic field parallel to superconducting layers and it has an influence to the upper critical field H_{C2}. It is shown that in the absence of the one-particle direct tunneling between layers the system becomes effectively two-dimensional in spite of the existence of interlayer e-e interactions. Hence, superconductivity becomes unstable with respect to the phase fluctuations of the order parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.