Abstract

In two-dimensional (2D) electron systems under strong magnetic fields, interactions can cause fractional quantum Hall (FQH) effects. Bringing two 2D conductors to proximity, a new set of correlated states can emerge due to interactions between electrons in the same and opposite layers. Here we report interlayer correlated FQH states in a system of two parallel graphene layers separated by a thin insulator. Current flow in one layer generates different quantized Hall signals in the two layers. This result is interpreted by composite fermion (CF) theory with different intralayer and interlayer Chern-Simons gauge-field coupling. We observe FQH states corresponding to integer values of CF Landau level (LL) filling in both layers, as well as "semi-quantized" states, where a full CF LL couples to a continuously varying partially filled CF LL. Remarkably, we also recognize a quantized state between two coupled half-filled CF LLs, attributable to an interlayer CF exciton condensate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.