Abstract

The interlayer breathing and shear modes in few-layer black phosphorus are investigated for their symmetry and lattice dynamical properties. The symmetry groups for the even-layer and odd-layer few-layer black phosphorus are utilized to determine the irreducible representation and the infrared and Raman activity for the interlayer modes. The valence force field model is applied to calculate the eigenvectors and frequencies for the interlayer breathing and shear modes, which are explained using the atomic chain model. The anisotropic puckered configuration for black phosphorus leads to a highly anisotropic frequency for the two interlayer shear modes. More specifically, the frequency for the shear mode in the direction perpendicular to the pucker is less than half of the shear mode in the direction parallel with the pucker. We also report a set of specular interlayer modes having the same frequency for all few-layer black phosphorus with layer numbers N being a multiple of 3, because these modes manifest themselves as collective vibrations of atoms in specific layers. The optical activity of the collective modes enables possible experimental identification for these modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call