Abstract

PurposeInterlaminar short circuits in turbo generator stators can lead to local damage of the iron core. The purpose of this paper is to model an interlaminar short circuit diagnosis test on an existing structure.Design/methodology/approachThis work presents the modeling of short‐circuited laminations in a stator yoke of a turbo‐generator. A 3D finite element model, associated to a homogenization technique, is used to calculate the short‐circuit current. The diagnosis test known as El Cid has been modelled as well.FindingsCalculation results are compared with the experiment. The same tendency has been observed both in experimental and numerical results.Research limitations/implicationsAdditional calculations may be performed (parametric studies) in order to investigate El Cid measuring under different conditions (different material properties, fault position, size), which may lead to a better interpretation of the results.Practical implicationsModelling of short circuit diagnosis tests under different conditions may help with the interpretation of measuring results, predicting the fault size/seriousness and location. So, only the concerned parts of the stator have to be disassembled and repaired/rebuilt.Originality/valueIt is not easy to model numerically a structure with a short circuit inside, since different dimensions are involved: the fault and the varnish between laminations are much smaller than the stator itself. Thus, homogenization techniques have been used to model the lamination stack region. The combination of this technique with the modelling of the El Cid test constitutes a tool to study this kind of fault and calculate its severity and location in a stator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.