Abstract

Interlaminar stress plays an important role in the delamination failure of laminated composites. A recently presented theory, the Interlaminar Shear Stress Continuity Theory (ISSCT), can directly and accurately predict interlaminar shear stresses in laminated composites by the constitutive equations. The present study further generalizes the derivation to a complete form from which many displacement-based laminate theories can be derived. Most of all, both the single-layer and multiple-layer approaches are incorporated into the analysis in the thickness direction. The laminate is discretized into several sublaminates and, then, a layerwise theory is applied in the analysis of this reduced laminate. This reduction in the number of layers used in the analysis makes the calculation of interlaminar shear stresses on the interested interface in a thick laminate more efficient. In addition, numerical solutions in closed-form and finite element form for laminates under cylindrical bending and bidirectional bending are examined. It is found that in the thickness direction the cubic order of the interpolation function and the discretization with four to six sublaminates can reduce the computational efforts dramatically and retain the accuracy of the predicted stresses within ±8 per cent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.