Abstract

In this study, a relatively low temperature synthesis technique; graphitic structure by design (GSD), was employed to grow multi‐walled carbon nanotubes (MWCNTs) over carbon fiber fabrics. The MWCNTs forests were grown into two different morphologies, uniform and patterned. Hybrid carbon fiber‐reinforced polymer composites (CFRPs) were fabricated based on the hybrid reinforcement. Double cantilever beam tests were performed to investigate the effect of the surface grown nano‐reinforcements on the Mode I interlaminar fracture toughness (GIc) of the hybrid CFRPs. Results revealed that the surface grown MWCNTs enhanced the GIc of the CFRPs by 22 and 32%, via uniform and checkerboard‐patterned growth morphologies, respectively. Fractography was also employed to reveal the MWCNTs’ role in interlaminar crack stoppage and deflection resulting in improving GIc of the hybrid CFRPs. POLYM. COMPOS., 40:E1470–E1478, 2019. © 2018 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.