Abstract

This work investigates the toughening performance of thermoplastic veils when used to interlay aerospace-grade CFRPs. Veils based on Polyethylene-terephthalate (PET), Polyphenylene-sulfide (PPS) and Polyamide-12 (PA) fibres (~10 μm in diameter) were used as interlayers of unidirectional (UD), non-crimp fabric (NCF) and 5-Harness satin weave (5H) carbon fibre/epoxy laminates. During a hot curing process of the laminates, the PET and PPS veils remained in a fibrous form, and the PA veils melted. This resulted in different toughening mechanisms, i.e. interlaying the PET and PPS veils introduced extensive thermoplastic fibre bridging, and adding the PA veils improved the fracture toughness of the epoxy matrix. The different toughening mechanisms of the veils, together with the different fracture mechanisms of the laminates, dramatically affected the toughening levels. In general, the PET and PPS veils were more effective for toughening the UD laminates, and the PA veils were superior for the NCF and 5H laminates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.