Abstract

The mode II interlaminar fatigue crack propagation behavior of unidirectional continuous glass fiber (GF) composites with a polypropylene (PP) matrix obtained under three different molding conditions has been studied with the use of the end-notch flexure (ENF) geometry. The microstructure and mechanical performance, especially the interlaminar fatigue crack propagation, are strongly affected by the molding conditions. Comparative results reveal a major influence of the fiber–matrix interface and the matrix morphology on the crack propagation resistance. The distribution of the ductile amorphous PP phase in the semi-crystalline PP matrix appears to be the controlling parameter determining the fatigue crack propagation resistance of the PP/GF composite. Fractographic observations clearly showed the role of this phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.