Abstract

Layered double hydroxides (LDHs) are materials with capacity of conducting anions. To get insight into the mechanisms controlling LDH intrinsic anionic transport properties, it is investigated the effect of composition on the anion diffusion coefficients in LDHs containing Mg or Zn as divalent cation, Al or Ga as trivalent cation, and OH– or Cl– as interlaminar anion. Diffusion coefficients are estimated simulating diffusion with a kinetic Monte Carlo algorithm on a potential energy surface (PES) associated with the dry interlayer anion. The PES is calculated using density functional theory. We find that at room temperature, diffusion coefficients increase as the difference in electronegativity between metal atoms composing the layers grows. However, at higher temperatures, systems with narrower PES basins become the ones with larger diffusion coefficients, owing to shorter residence times prior to hopping to a neighbor basin. We also find that Cl– has smaller diffusion coefficient than OH– owing to the l...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.