Abstract

We introduce a new technique for generating more efficient networks by systematically interlacing bypass rings to torus networks (iBT networks). The resulting network can improve the original torus network by reducing the network diameter, node-to-node distances, and by increasing the bisection width without increasing wiring and other engineering complexity. We present and analyze the statement that a 3D iBT network proposed by our technique outperforms 4D torus networks of the same node degree. We found that interlacing rings of sizes 6 and 12 to all three dimensions of a torus network with meshes 30 × 30 × 36 generate the best network of all possible networks, including 4D torus and hypercube of approximately 32,000 nodes. This demonstrates that strategically interlacing bypass rings into a 3D torus network enhances the torus network more effectively than adding a fourth dimension, although we may generalize the claim. We also present a node-to-node distance formula for the iBT networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.