Abstract

PurposeInterlaced beams have previously been proposed for delivering proton grid therapy. This study aims to assess dose-averaged LET (LETd) and RBE-weighted dose (DRBE) distributions of such beam geometries, and compare them with conventional intensity modulated proton therapy (IMPT). MethodsIMPT plans and four different interlaced proton grid therapy plans were generated for five patient cases (esophagus, lung, liver, prostate, anus). The constant RBE = 1.1 was assumed for optimization. The LETd was subsequently Monte Carlo calculated for each plan and used as input for two LET-dependent variable RBE models. The fulfilment of clinical goals, along with DVH and spatial distribution evaluations, were then assessed and compared. ResultsAll plans fulfilled the clinical target goals assuming RBE = 1.1. The target coverage was slightly compromised for some grid plans when assuming the variable RBE models. All IMPT plans, and 18 of 20 grid plans, fulfilled all clinical goals for the organs at risk when assuming RBE = 1.1, whereas most plans failed at least one goal when assuming the variable RBE models. Compared with the IMPT plans, the grid plans demonstrated substantially different LETd distributions due to the fundamentally different beam geometries. However, DRBE distributions in the target were similar. ConclusionsDespite the unconventional beam geometries of interlaced proton grid plans, with resulting alternating dose and LETd patterns, the fulfillment of realistic clinical goals seems to be comparable to regular IMPT plans, both assuming RBE = 1.1 and variable RBE models. In addition, the alternating grid patterns do not seem to give rise to unexpected DRBE hot-spots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call