Abstract

Some general properties of the wave functions of complex-valued potentials with real spectrum are studied. The main results are presented in a series of lemmas, corollaries and theorems that are satisfied by the zeros of the real and imaginary parts of the wave functions on the real line. In particular, it is shown that such zeros interlace so that the corresponding probability densities ρ(x) are never null. We find that the profile of the imaginary part VI(x) of a given complex-valued potential determines the number and distribution of the maxima and minima of the related probability densities. Our conjecture is that VI(x) must be continuous in R, and that its integral over all the real line must be equal to zero in order to get control on the distribution of the maxima and minima of ρ(x). The applicability of these results is shown by solving the eigenvalue equation of different complex potentials, these last being either PT-symmetric or not invariant under the PT-transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.