Abstract

Researchers at Los Alamos National Laboratory (LANL) developed a field-portable fluorescence method for the measurement of trace beryllium in workplace samples such as surface dust and air filters. The technology has been privately licensed and is commercially available. In cooperation with the Analytical Subcommittee of the Beryllium Health and Safety Committee, we have carried out a collaborative interlaboratory evaluation of the LANL field-portable fluorescence method. The interlaboratory study was conducted for the purpose of providing performance data that can be used to support standard methods. Mixed cellulose ester (MCE) membrane filters and Whatman 541 filters were spiked with beryllium standard solutions so that the filters spanned the range ≈0.05 – ≈0.5 μg Be per sample. Sets of these filters were then coded (to ensure blind analysis) and sent to participating laboratories, where they were analyzed. Analysis consisted of the following steps: 1. Removal of the filters from transport cassettes and placement of them into 15-mL centrifuge tubes; 2. mechanically-assisted extraction of the filters in 5 mL of 1 % ammonium bifluoride solution (aqueous) for 30 min; 3.–4. filtration and transfer of sample extract aliquots (100 μL) into fluorescence cuvettes; 5. introduction of 1.9 mL of detection solution (to effect reaction of the fluorescence reagent with beryllium in the extracted sample); and 6. measurement of fluorescence at ≈75 nm using a portable fluorometer. This work presents performance data in support of a procedure that is targeted for publication as a National Institute for Occupational Safety and Health (NIOSH) method and as an ASTM International standard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.