Abstract
Peptide-Fc fusion proteins are inherently heterogeneous and complex molecules. Protein post-translational modifications (PTMs) or truncation can arise during manufacturing or product storage. Some of these product attributes could potentially impact the efficacy or safety of the bio-molecule and are thus classified as critical quality attributes (CQAs). These CQAs should be controlled in order to ensure manufacturing and quality consistency. A subunit UPLC-ToF MS based MAM method was developed for identity test and quantitatively monitored two critical quality attributes (CQAs) resulting from two truncations of that fusion protein (fragment 1 and 2). Three independent laboratories are involved in the method validation according to ICH Q2(R1), ICH Q6B, FDA and NMPA guidance. This developed method fully meets the pre-defined analytical target profile (ATP), including specificity, accuracy, precision, quantitation limit, linearity, range and robustness. Three independent labs co-validate a UPLC-ToF MS based MAM method for protein drug QC release and stability testing. The experimental design of method validation can be a reference for LC-HRMS-based subunit MAM methods that have been widely used in the characterization of antibodies, ADCs and other protein-based biologics. This work paves the way for implementing MAM in QC with more targeted control of product quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.