Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an important pseudocereal crop with excellent edible, nutritional and medicinal values. However, the yield of Tartary buckwheat (TB) is very low due to old-fashioned cultivation techniques, particularly unreasonable application of nitrogen fertilizer. To improve the understanding on the theories of nitrogen use in TB, the effects of nitrogen application on growth, as well as chemical properties and microbial community of rhizosphere soil were investigated in this study. Nitrogen application could promote the plant height, stem diameter, nitrogen accumulation and yield of TB. The relative abundance and diversity of bacteria and fungi in the rhizosphere soil of TB were improved by nitrogen fertilizer. Nitrogen application increased the abundance of beneficial bacteria such as Lysobacter and Sphingomonas in rhizosphere soil, and decreased the abundance of pathogenic fungi such as Fusarium and Plectosphaerella. The results indicated that nitrogen application changed the distribution of microbial communities in TB rhizosphere soil. Furthermore, the specific enriched or depleted microorganisms in the rhizosphere soil of four TB varieties were analyzed at OTU level. 87 specific nitrogen-responsive genes with sequence variation were identified in four varieties by integrating genomic re-sequencing and transcriptome analysis, and these genes may involve in the recruitment of specific rhizosphere microorganisms in different TB varieties. This study provided new insights into the effects of nitrogen application on TB growth and rhizosphere microbial community, and improved the understanding on the mechanisms of TB root-microbe interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.