Abstract

In the adult zebrafish, death of retinal neurons stimulates Müller glia to re-enter the cell cycle to produce neuronal progenitor cells (NPCs) that undergo further cell divisions and differentiate to replace lost neurons in the correct spatial locations. Understanding the mechanisms regulating retinal regeneration will ultimately provide avenues to overcome vision loss in human. Recently, the observation of interkinetic nuclear migration (INM) of Müller glia in the regenerating zebrafish retina resulted in the inclusion of an additional complex step to the regeneration process. The pathways regulating INM and its function in the regenerating retina have not been well studied. Here, we summarize the evidence for INM in the regenerating retina and review mechanisms that control INM during neuro-epithelial development in the context of pathways known to be critical during retinal regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.