Abstract

Understanding the underlying causes of phenotypic trait variation among populations is important for informing conservation decisions. This knowledge can be used to determine whether locality matters when sourcing populations for habitat restoration. Uniola paniculata is a federally protected coastal dune grass native to the southeastern Atlantic and the Gulf coasts of the USA that is often used to stabilize restored dune habitats. This study uses neutral genetic markers (allozymes) and a greenhouse common garden study to determine the relative contributions of neutral evolutionary processes and natural selection to patterns of phenotypic variation among natural populations of U. paniculata. Seeds were sourced from foredune and backdune populations spanning shoreline-to-landward environmental gradients on each of four Georgia barrier islands. Based on previous work, we expected to find evidence of divergent selection among populations located on the shoreline-to-landward environmental gradient. However, differences among islands, rather than intra-island habitat differences, drive divergent selection on aboveground and total biomass. The lack of evidence for divergent selection across the shoreline-to-landward gradient suggests that previously documented intra-island trait variation is likely due to phenotypic plasticity. Our findings have implications for conservation and restoration efforts involving U. paniculata, as there is evidence for divergent selection among populations located on neighboring islands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call