Abstract

Для метрического пространства $M$ доказано наличие непрерывных отображений $\{M_n\}^{\infty}_{n=1}$, каждое из которых любому компакту $K \subset M$ ставит в соответствие вероятностную меру $M_n(K)$ с носителем $\operatorname{supp}(M_n(K)) = K$ таким образом, что множество $\{M_n(K)\}^{\infty}_{n=1}$ плотно в пространстве вероятностных мер на $K$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.