Abstract
AbstractPulsating tension tests with constant amplitude (CA) and variable amplitude (VA) were conducted to investigate the interior failure mechanisms of a carburized Cr steel, and a cumulative damage model with the fine granular area (FGA) formation process was proposed in this study. Such a steel represents the continuously descending S‐N (stress‐number of cycles) curve characteristics associated with inclusion‐FGA‐fisheye induced failure even under variable amplitude. Due to crack growth retardations and accelerations resulted from the interaction effect between stepwise resets of the applied stress, the crack morphology under variable amplitude loading is much rougher. The interior failure mechanism was elucidated in combination with the determination of stress intensity factor values at different crack tips. Based on proposed damage model, the agreement between the predicted and experimental results is fairly good within the factor‐of‐two range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.