Abstract

Extracting interior photoinduced species to the surface before their recombination is of great importance in pursuing high-efficiency semiconductor-based photocatalysis. Traditional strategies toward charge-carrier extraction, mostly relying on the construction of an electric field gradient, would be invalid toward the neutral-exciton counterpart in low-dimensional systems. In this work, by taking bismuth oxybromide (BiOBr) as an example, we manipulate interior exciton extraction to the surface by implementing iodine doping at the edges of BiOBr plates. Spatial- and time-resolved spectroscopic analyses verified the accumulation of excitons and charge carriers at the edges of iodine-doped BiOBr (BiOBr-I) plates. This phenomenon could be associated with interior exciton extraction, driven by an energy-level gradient between interior and edge exciton states, and the following exciton dissociation processes. As such, BiOBr-I shows remarkable performance in photocatalytic C-H fluorination, mediated by both energy- and charge-transfer processes. This work uncovers the importance of spatial regulation of excitonic properties in low-dimensional semiconductor-based photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.