Abstract
Elastic waves propagating in graphene nanoribbons were studied using both continuum modeling and molecular dynamics simulations. The Mindlin's plate model was employed to model the propagation of interior waves of graphene, and a continuum beam model was proposed to model the propagation of edge waves in graphene. The molecular dynamics results demonstrated that the interior longitudinal and transverse wave speeds of graphene are about 18,450 m/s and 5640 m/s, respectively, in good agreement with the Mindlin's plate model. The molecular dynamics simulations also revealed the existence of elastic edge waves, which may be described by the proposed continuum beam model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.