Abstract

Abstract Bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate multiplicative interior and additive closure operators (mi- and ac-operators) generalizing topological interior and closure operators on such algebras. We describe connections between mi- and ac-operators, and for residuated lattices with Glivenko property we give connections between operators on them and on the residuated lattices of their regular elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.