Abstract

A dose of 1,000 mg probenecid was administered orally to 14 human volunteers in order to quantify the maximal rate of formation and excretion of probenecid acyl glucuronide in the urine. Probenecid showed dose-dependent pharmacokinetics. Plasma protein binding of probenecid was high, being somewhat higher in males (90.7 +/- 1.4%) than in females (87.9 +/- 1.4%; p = 0.0019). It was shown that probenecid is metabolized by cytochrome P-450 into at least two phase I metabolites. Each of the metabolites accounted for less than 12% of the dose administered; the main metabolite probenecid acyl glucuronide, representing 42.9 +/- 13.2% of the dose, was only present in urine and not in plasma. The renal excretion rate-time profile of probenecid acyl glucuronide showed a plateau value in the presence of an acidic urine pH. This plateau value was maintained for about 10 h at the dose of 1,000 mg. The height of the plateau value depended on the individual and varied between 250 and 800 micrograms/min (15-50 mg/h). It was inferred that probenecid acyl glucuronide is formed in the kidney during blood-to-lumen passage through the tubular cells. We conclude that the plateau value in the renal excretion rate of probenecid glucuronide reflects its Vmax of formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.