Abstract

The breast cancer resistance protein (BCRP/ABCG2) is a maternally-facing efflux transporter that regulates the placental disposition of chemicals. Transcription factors and gene variants are important regulatory factors that influence transporter expression. In this study, we sought to identify the genetic and transcriptional mechanisms underlying the interindividual expression of BCRP mRNA and protein across 137 term placentas from uncomplicated pregnancies. Placental expression of BCRP and regulatory transcription factor mRNAs was measured using multiplex-branched DNA analysis. BCRP expression and ABCG2 genotypes were determined using Western blot and Fluidigm Biomark genetic analysis, respectively. Placentas were obtained from a racially and ethnically diverse population, including Caucasian (33%), African American (14%), Asian (14%), Hispanic (15%), and mixed (16%) backgrounds, as well as unknown origins (7%). Between placentas, BCRP mRNA and protein varied up to 47-fold and 14-fold, respectively. In particular, BCRP mRNA correlated significantly with known transcription factor mRNAs, including nuclear factor erythroid 2-related factor 2 and aryl hydrocarbon receptor. Somewhat surprisingly, single-nucleotide polymorphisms (SNPs) in the ABCG2 noncoding regions were not associated with variation in placental BCRP mRNA or protein. Instead, the coding region polymorphism (C421A/Q141K) corresponded with 40%-50% lower BCRP protein in 421C/A and 421A/A placentas compared with wild types (421C/C). Although BCRP protein and mRNA expression weakly correlated (r = 0.25, P = 0.040), this relationship was absent in individuals expressing the C421A variant allele. Study results contribute to our understanding of the interindividual regulation of BCRP expression in term placentas and may help to identify infants at risk for increased fetal exposure to chemicals due to low expression of this efflux protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.