Abstract

ScopeAn in vitro faecal incubation model combined with reporter gene assay based testing strategy is developed to characterize interindividual differences in the gut microbial conversion of (‐)‐epigallocatechin‐3‐O‐gallate (EGCG) and its consequences for potential activation of Nrf2‐mediated gene expression.Method & ResultsAnaerobic human faecal incubations are performed to characterize the microbial metabolism of EGCG including interindividual variability. EGCG derived intestinal microbial metabolite patterns show substantial interindividual differences that are correlated to relative microbial abundances determined by 16S rRNA sequencing. Results obtained show the time‐dependent formation of gallic acid, pyrogallol, phenylpropane‐2‐ols, phenyl‐γ‐valerolactones, and 5‐(3′,5′‐dihydroxyphenyl)valeric acid as the major metabolites, with substantial interindividual differences. The activity of the formed metabolites in the activation of EpRE‐mediated gene expression is tested by EpRE‐LUX reporter gene assay. In contrast to EGCG, at low micromolar concentrations, especially gallic acid, pyrogallol, and catechol induce significant activity in the EpRE‐LUX assay.ConclusionsGiven these results and taking the level of formation into account, it is concluded that especially gallic acid and pyrogallol contribute to the EpRE‐mediated beneficial effects of EGCG. The interindividual differences in the formation may result in interindividual differences in the beneficial effects of EGCG and green tea consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.