Abstract

Large capacity tags are becoming available to meet the demands of industry, but the UHF RFID protocol is unable to reliably and efficiently read large data sets from tags. First of all, large data sets are not well protected. The tag merely relies on 16-bit CRC for ensuring the validity of up to 4,096-bit user-specific data in EPCglobalC1G2 protocol. Furthermore, the reliability will be even worse if large capacity tags are implemented using semi-active technology which is likely to prevail among sensor-integrated RFID tags. Since semi-active tags greatly alleviate the performance limitation imposed by the turn-on power of the tag chip, backscattering signal of semi-active tags could be a serious challenge for most readers because it is much weaker than signals emitted by passive tags due to longer reading distance. In this paper, Interim CRC is presented to enhance transmission reliability and efficiency when the tag is backscattering a large data set. By taking advantage of Interim CRC, the large data set can be divided into several blocks, and 16-bit checksum is calculated over each block. The tag backscatters all blocks at the first time and only retransmits certain blocks if CRC error occurs in those blocks. The result of simulation shows that the reading error rate can be confined to a preset threshold and the accumulative total of transmitted data are greatly reduced if optimal block size and transmission times are complied with. The simulation also conclusively proves that semi-active tags derive even longer reading range from Interim CRC. In addition, Interim CRC is totally compliant with the EPCglobalC1G2 protocol. It fully makes use of CRC-16 encoder and does not involve any other data encoding schematics and hardware modifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.