Abstract

ObjectiveThe current electroencephalography (EEG) measurement setup is complex, laborious to set up, and uncomfortable for patients. We hypothesize that differences in EEG signal characteristics for sleep staging between the left and right hemispheres are negligible; therefore, there is potential to simplify the current measurement setup. We aimed to investigate the technical hemispheric differences in EEG signal characteristics along with electrooculography (EOG) signals during different sleep stages. MethodsType II portable polysomnography (PSG) recordings of 50 patients were studied. Amplitudes and power spectral densities (PSDs) of the EEG and EOG signals were compared between the left (C3-M2, F3-M2, O1-M2, and E1-M2) and the right (C4-M1, F4-M1, O2-M1, and E2-M2) hemispheres. Regression analysis was performed to investigate the potential influence of sleep stages on the hemispheric differences in PSDs. Wilcoxon signed-rank tests were also employed to calculate the effect size of hemispheres across different frequency bands and sleep stages. ResultsThe results showed statistically significant differences in signal characteristics between hemispheres, but the absolute differences were minor. The median hemispheric differences in amplitudes were smaller than 3 μv with large interquartile ranges during all sleep stages. The absolute and relative PSD characteristics were highly similar between hemispheres in different sleep stages. Additionally, there were negligible differences in the effect size between hemispheres across all sleep stages. ConclusionsTechnical signal differences between hemispheres were minor across all sleep stages, indicating that both hemispheres contain similar information needed for sleep staging. A reduced measurement setup could be suitable for sleep staging without the loss of relevant information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call