Abstract
Atlantic decadal climate variations are studied using marine meteorological observations. To remove artificial interhemispheric correlation, we perform empirical orthogonal function (EOF) analysis of sea surface temperature (SST) variability separately for the North and South Atlantic. The first EOF for the North (South) Atlantic in the decadal (8‐16 years) band features a meridional tripole (dipole). In the tropics, the northern and southern leading EOFs form a meridional dipole with a center of action at 15 � on either side of the equator. The leading sea level pressure (SLP) EOFs for the North and South Atlantic each feature a center of action that is displaced poleward of the tropical SST extreme, at 30 � latitude. The SLP center of action in the North Atlantic has a barotropic structure and contributes significantly to surface wind variability in the tropics. Despite being derived from statistically independent data samples, the principle components for the leading SST and SLP EOFs (four in total) are significantly correlated with one another, indicative of the existence of an interhemispheric mode spanning the entire Atlantic Ocean. The same analysis for a longer SST record suggests that this pan-Atlantic decadal variability exists throughout the 20th century. In the North Atlantic, composite analysis of wind velocity and heat fluxes based on the PCs of the leading SST modes indicates that wind-induced latent heat flux is the major forcing for decadal SST variability. In the South Atlantic, by contrast, wind anomalies are neither organized in space nor in geostrophic balance with SLP, a problem likely due to poor sampling there as indicated by a comparison with well-sampled satellite measurements. Spatially coherent anomalies of low-level cloud cover are found to be associated with the tropical Atlantic dipole, with increased (decreased) cloudiness over the cold (warm) lobe. These low-level cloud anomalies do not appear to be associated with significant surface wind convergence, unlike the deep convective clouds near the equator. By shielding solar radiation, these low-level cloud anomalies act to reinforce the underlying SST anomalies, reducing the Newtonian cooling rate for SST by as much as 30%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Meteorological Society of Japan. Ser. II
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.