Abstract

Animals precisely coordinate their left and right limbs for various adaptive purposes. While the left and right limbs are clearly controlled by different cortical hemispheres, the neural mechanisms that determine the action sequence between them remains elusive. Here, we have established a novel head-fixed bimanual-press (biPress) sequence task in which mice sequentially press left and right pedals with their forelimbs in a predetermined order. Using this motor task, we found that the motor cortical neurons responsible for the first press (1P) also generate independent motor signals for the second press (2P) by the opposite forelimb during the movement transitions between forelimbs. Projection-specific calcium imaging and optogenetic manipulation revealed these motor signals are transferred from one motor cortical hemisphere to the other via corticocortical projections. Together, our results suggest the motor cortices coordinate sequential bimanual movements through corticocortical pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.