Abstract

Intergranular strains due to tensile plastic deformation were investigated in a sheet material of austenitic stainless steel. The objective was to study the development of residual intergranular strains in samples unloaded from the intermediate and large plastic deformation regimes for which few theoretical and experimental studies were available. By using neutron diffraction, residual lattice strain distribution as a function of sample direction was mapped for a number of crystallographic planes. Deformation microstructures were examined by both transmission electron microscopy and the electron back scattering pattern technique. Residual intergranular strains were observed in samples deformed significantly beyond the elastic limit and the strains varied with sample directions as well as the amount of applied plastic strain. In addition, a different tendency of intergranular strain evolution was observed after large plastic deformation, which could be attributed to the change of dominant plastic deformation mode from slip to mechanical twinning. The results are discussed based on the observed deformation microstructure studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call