Abstract

Nickel and some nickel-base alloys are extremely sensitive to intergranular embrittlement and tellurium (Te) enhanced cracking, which should be concerned during their serving in molten salt reactors. Here, a systematic study about the effects of its temperature on the reaction products at its surface, the intergranular diffusion of Te in its body and its embrittlement for a Ni–16Mo–7Cr alloy contacting Te is reported. For exposed to Te vapor at high temperature (823–1073 K), the reaction products formed on the surface of the alloy were Ni3Te2, CrTe, and MoTe2, and the most serious embrittlement was observed at 1073 K. The kinetic measurement in terms of Te penetration depth in the alloy samples gives an activation energy of 204 kJ/mol. Electron probe microanalysis confirmed the local enrichment of Te at grain boundaries. And clearly, the embrittlement was results from the intergranular diffusion and segregation of element Te.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call