Abstract

This study is devoted to the effect of a multiaxial stress state and of pre-straining on the creep properties of an austenitic stainless steel. Creep tests on both smooth and notched specimens have been carried out on type 316L(N) steel at 600 °C. In comparison to the annealed state, pre-straining caused a substantial increase in creep lifetime but also a dramatic drop in intergranular damage resistance. The effect of a pre-strain on creep ductility was so strong that compact tension specimens in pre-strained state tested under relaxation conditions cracked, whereas specimens in annealed state were not prone to cracking. A model taking into account both pre-strain and multiaxial effects was developed and identified on the basis of local intergranular micro-cracks measurements on notched specimens. It satisfactorily predicts the results of relaxation crack propagation tests. This model may also provide a useful estimation of the relaxation cracking risk of 316L(N) as a function of pre-strain level and stress triaxiality ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call