Abstract

Intergranular corrosion (IGC) behavior of the stabilized ultra-pure 430LX ferritic stainless steel (FSS) was investigated by using double loop electrochemical potentiokinetic reactivation (DL-EPR) and oxalic acid etch tests to measure the susceptibility of specimens given a two-step heat treatment. The results reveal that IGC occurs in the specimens aged at the temperature range of 600–750 °C for a short time. The aging time that is required to cause IGC decreases with the increase of aging temperature. A longer aging treatment can reduce the susceptibility to IGC. The microstructural observation shows that M23C6 precipitates form along the grain boundaries, leading to the formation of Cr-depleted zones. The presence of Cr-depleted zones results in the susceptibility to IGC. However, the atoms of stabilizing elements replace chromium atoms to form MC precipitates after long-time aging treatment, resulting in the chromium replenishment of Cr-depleted zones and the reduction of the susceptibility to IGC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call