Abstract
Recent molecular detection of vast microbial communities exclusively associated with sponges has made evident the need for a better understanding of the mechanisms by which these symbiotic microbes are handled and transferred from one sponge generation to another. This transmission electron microscopy (TEM) study investigated the occurrence of symbiotic bacteria in free-swimming larvae of two viviparous species (Haliclona caerulea and Corticium candelabrum) and spawned gametes of two oviparous species (Chondrilla nucula and Petrosia ficiformis). Complex microbial communities were found in these sponges, which in two cases included bacteria characterized by an intra-cytoplasmic membrane (ICM). When ICM-bearing and ICM-lacking bacteria co-existed, they were transferred following identical pathways. Nevertheless, the mechanism for microbial transference varied substantially between species. In C. nucula, a combination of intercellular symbiotic ICM-bearing and ICM-lacking bacteria, along with cyanobacteria and yeasts, were collected from the mesohyl by amoeboid nurse cells, then transported and transferred to the oocytes. In the case of Corticium candelabrum, intercellular bacteria did not enter the gametes, but spread into the division furrows of early embryos and proliferated in the central cavity of the free-swimming larva. Surprisingly, symbiotic bacteria were not vertically transmitted by P. ficiformis gametes or embryos, but apparently acquired from the environment by the juveniles of each new generation. This study failed to unravel the mechanism by which the intercellular endosymbiotic bacterium found in the central mesohyl of the H. caerulea larva got there. Nevertheless, the ultrastructure of this bacterial rod, which was characterized by a star-shaped cross section with nine radial protrusions, an ICM-bound riboplasm, and a putative membrane-bound acidocalcisome, suggested that it may represent a novel organization grade within the prokaryotes. It combines traits occurring in members of Poribacteria, Planctomycetes and Verrucomicrobia, emerging as one of the most complex prokaryotic architectures known to date.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Marine Biological Association of the United Kingdom
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.