Abstract
Many social animals display collective activity cycles based on synchronous behavioural oscillations across group members. A classic example is the colony cycle of army ants, where thousands of individuals undergo stereotypical biphasic behavioural cycles of about one month. Cycle phases coincide with brood developmental stages, but the regulation of this cycle is otherwise poorly understood. Here, we probe the regulation of cycle duration through interactions between brood and workers in an experimentally amenable army ant relative, the clonal raider ant. We first establish that cycle length varies across clonal lineages using long-term monitoring data. We then investigate the putative sources and impacts of this variation in a cross-fostering experiment with four lineages combining developmental, morphological and automated behavioural tracking analyses. We show that cycle length variation stems from variation in the duration of the larval developmental stage, and that this stage can be prolonged not only by the clonal lineage of brood (direct genetic effects), but also of the workers (indirect genetic effects). We find similar indirect effects of worker line on brood adult size and, conversely (but more surprisingly), indirect genetic effects of the brood on worker behaviour (walking speed and time spent in the nest).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.