Abstract

In agroecosystems, herbicides are the predominant anthropogenic selection pressure for agriculture weed species. While weeds are the primary target, herbicides can have adverse impacts on non-target plant beneficial microorganisms. We aimed to investigate the influence of a foliar endophytic fungus (Epichloë occultans) on the sensitivity of Lolium multiflorum to a graminicide herbicide (diclofop-methyl) during both plant ontogeny and progeny. Susceptible individuals to diclofop-methyl with and without endophyte were pre-exposed to the auxin 2,4-D herbicide. This herbicide is known to stimulate the metabolic detoxification mechanism (CYP-450) of diclofop-methyl. Regardless of the endophyte, 2,4-D pre-treatment increased mother plant survival to nearly 100 % under diclofop treatment but not in the progeny. Furthermore, maternal plant exposure to 2,4-D reduced endophyte transmission to the seeds and from seed-to-seedlings. Our findings suggest that, despite a reduction in diclofop-methyl sensitivity during the ontogeny of mother plants, 2,4-D-mediated induction of likely CYP-450 metabolism is not intergenerationally transmitted and shows detrimental effects on the symbiotic endophyte persistence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.