Abstract

ABSTRACT Matter in the Universe is arranged in a cosmic web, with a filament of matter typically connecting each neighbouring galaxy pair, separated by tens of millions of light-years. A quadrupolar pattern of the spin field around filaments is known to influence the spins of galaxies and haloes near them, but it remains unknown whether filaments themselves spin. Here, we measure dark matter velocities around filaments in cosmological simulations, finding that matter generally rotates around them, much faster than around a randomly located axis. It also exhibits some coherence along the filament. The net rotational component is comparable to, and often dominant over, the known quadrupolar flow. The evidence of net rotations revises previous emphasis on a quadrupolar spin field around filaments. The full picture of rotation in the cosmic web is more complicated and multiscale than a network of spinning filamentary rods, but we argue that filament rotation is substantial enough to be an essential part of the picture. It is likely that the longest coherently rotating objects in the Universe are filaments. Also, we speculate that this rotation could provide a mechanism to generate or amplify intergalactic magnetic fields in filaments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.