Abstract
The in-plane failure envelopes of unidirectional (UD) laminae in a UD and a Triax (0°, ±45°) laminate configuration have been investigated. The two laminate configurations have been characterised by testing off-axis specimens in uniaxial tension and compression at different angles relative to the fibre direction and further by Iosipescu shear tests. Strain gauge and Digital Image Correlation (DIC) measurements were used to measure the deformation states during loading, and to record the stress-strain responses to identify the initiation of failure and investigate the heterogeneity of the material and possible parasitic effects. A novel analysis methodology to determine the so-called ‘failure initiation strength’ based on the second derivative of the stresses with respect to the strains has been adopted. The experimentally determined ‘failure initiation stresses’ were compared with predictions from the commonly applied Maximum Stress, Tsai-Wu, and Puck failure criteria. From this work, a thorough comparison of the UD and Triax failure envelopes has been facilitated. It is shown that failure prediction for the Triax laminate based on the failure envelope derived from UD lamina tests may be too conservative in comparison with fitting a failure criterion directly to the Triax laminate test data. The latter approach implies that the Triax laminate is considered as a single lamina with homogenised properties, which in principle violates the theoretical background of the considered failure criteria, since these are established to predict failure for a UD lamina. However, the simple homogenisation is shown to be a useful design oriented approach for providing a simple estimation of the onset of failure in laminate configurations composed of e.g., multiple layers of Triax. Thus, a reliable and efficient approach is offered for the structural integrity assessment, which takes the non-crimp fabric configurations directly or ‘as delivered’ into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.