Abstract

Hybridization and introgression between Quercus alnifolia Poech and Q. coccifera L. is studied by analyzing morphological traits, nuclear and chloroplast DNA markers. The study site is a mixed stand on Troodos Mountains (Cyprus) and the analyzed material includes both adult trees and progenies of specific mother trees. Multivariate analysis of morphological traits shows that the two species can be well distinguished using simple leaf morphometric parameters. A lower genetic diversity in Q. alnifolia than in Q. coccifera and a high interspecific differentiation between the two species are supported by an analysis of nuclear and chloroplast microsatellites. The intermediacy of the four designated hybrids is verified by both leaf morphometric and genetic data. Analysis of progeny arrays provides evidence that interspecific crossings are rare. This finding is further supported by limited introgression of chloroplast genomes. Reproductive barriers (e.g. asynchronous phenology, post-zygotic incompatibilities) might account for this result. A directionality of interspecific gene flow is indicated by a genetic assignment analysis of effective pollen clouds with Q. alnifolia acting as pollen donor. Differences in flowering phenology and species distribution in the stand may have influenced the direction of gene flow and the genetic differentiation among effective pollen clouds of different mother trees within species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call