Abstract

Interferon-alpha (IFNalpha) has shown promise in the treatment of various cancers. However, the development of IFN resistance is a significant drawback. Using conditions that mimic in vivo selection of IFN-resistant cells, the RST2 IFN-resistant cell line was isolated from the highly IFN-sensitive Daudi human Burkitt lymphoma cell line. The RST2 cell line was resistant to the antiviral, antiproliferative, and gene-induction actions of IFNalpha. Although STAT2 mRNA was present, STAT2 protein expression was deficient in RST2 cells. A variant STAT2 mRNA, which resulted from alternative splicing within the intron between exon 19 and 20, was expressed in several human cell lines but at relatively high levels in RST2 cells. Most importantly, the RST2 line showed an intrinsic resistance to apoptosis induced by a number of chemotherapeutic agents (camptothecin, staurosporine, and doxorubicin). Expression of STAT2 in RST2 cells not only rescued their sensitivity to the biological activities of IFNs but also restored sensitivity to apoptosis induced by these chemotherapeutic agents. The intrinsic resistance of the RST2 cells to IFN as well as chemotherapeutic agents adds a new dimension to our knowledge of the role of STAT2 as it relates to not only biological actions of IFN but also resistance to chemotherapy-induced apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.