Abstract

BackgroundType I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways. It has long been recognized that type I IFNs can potently block HIV-1 replication in vitro; as such, HIV-1 has been used as a system to identify and characterize IFN-induced antiviral proteins responsible for this block. IFN-induced HERC5 contains an amino-terminal Regulator of Chromosome Condensation 1 (RCC1)-like domain and a carboxyl-terminal Homologous to the E6-AP Carboxyl Terminus (HECT) domain. HERC5 is the main cellular E3 ligase that conjugates the IFN-induced protein ISG15 to proteins. This E3 ligase activity was previously shown to inhibit the replication of evolutionarily diverse viruses, including HIV-1. The contribution of the RCC1-like domain to the antiviral activity of HERC5 was previously unknown.ResultsIn this study, we showed that HERC5 inhibits HIV-1 particle production by a second distinct mechanism that targets the nuclear export of Rev/RRE-dependent RNA. Unexpectedly, the E3 ligase activity of HERC5 was not required for this inhibition. Instead, this activity required the amino-terminal RCC1-like domain of HERC5. Inhibition correlated with a reduction in intracellular RanGTP protein levels and/or the ability of RanGTP to interact with RanBP1. Inhibition also correlated with altered subcellular localization of HIV-1 Rev. In addition, we demonstrated that positive evolutionary selection is operating on HERC5. We identified a region in the RCC1-like domain that exhibits an exceptionally high probability of having evolved under positive selection and showed that this region is required for HERC5-mediated inhibition of nuclear export.ConclusionsWe have identified a second distinct mechanism by which HERC5 inhibits HIV-1 replication and demonstrate that HERC5 is evolving under strong positive selection. Together, our findings contribute to a growing body of evidence suggesting that HERC5 is a novel host restriction factor.

Highlights

  • Type I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways

  • Homologous to the E6-AP Carboxyl Terminus (HECT) domain and Regulator of Chromosome Condensation 1 (RCC1)-like domain-containing protein 5 (HERC5) inhibits Human immunodeficiency virus type 1 (HIV-1) particle production by an E3 ligase-independent mechanism The E3 ligase activity of HERC5 was previously shown to contribute to the inhibition of Pr55Gag particle production [1]

  • The results show that positive selection is operating on HERC5 and that several codons situated in the RCC1-like domain, the spacer region and the HECT domain exhibit exceptionally high probabilities of having evolved under positive selection

Read more

Summary

Introduction

Type I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways. IFN-induced HERC5 contains an amino-terminal Regulator of Chromosome Condensation 1 (RCC1)-like domain and a carboxyl-terminal Homologous to the E6-AP Carboxyl Terminus (HECT) domain. HERC5 is the main cellular E3 ligase that conjugates the IFN-induced protein ISG15 to proteins. This E3 ligase activity was previously shown to inhibit the replication of evolutionarily diverse viruses, including HIV-1. The cellular HERC5 protein was recently identified as an antiviral protein that inhibits replication of evolutionarily diverse viruses [1,2,3]. HERC5 is the main cellular E3 ligase that conjugates the ubiquitin-like protein ISG15 to proteins in human cells via a hierarchical enzymatic cascade involving E1 activating enzyme Ube1L and E2 conjugating enzyme UbcH8 [18,19]. HERC5 conjugates ISG15 to the human papillomavirus (HPV) L1 capsid protein, conferring a dominant-inhibitory effect on the infectivity of HPV16 pseudoviruses [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call