Abstract

Interferon regulatory factor 5 (IRF-5) is a transcription factor that mediates intracellular signals activated by engagement of Toll-like receptors (TLRs). IRF5 polymorphisms are associated with an increased or decreased risk of systemic lupus erythematosus (SLE) in various human populations, but the precise role of IRF5 in SLE development is not fully understood. This study was undertaken to examine the role of IRF5 in the development of murine lupus. We crossed gene-targeted IRF5-deficient (IRF5(-/-) ) mice with MRL/MpJ-lpr/lpr (MRL/lpr) mice and examined the progeny for survival, glomerulonephritis, autoantibody levels, immune system cell populations, and dendritic cell function. IRF5(-/-) MRL/lpr mice survived longer than control IRF5(+/+) MRL/lpr mice and displayed only very mild glomerulonephritis. Autoantibodies to SLE-related nuclear antigens were lower in IRF5(-/-) MRL/lpr mouse serum, and numbers of activated CD4+ T cells were reduced in the spleen. Splenic DCs from IRF5(-/-) MRL/lpr mice produced lower levels of inflammatory cytokines when treated in vitro with TLR-7 or TLR-9 ligands or immune complexes. Interferon-α production in response to CpG was also decreased. Our results show that IRF5 is a crucial driver of lupus development in mice, and indicate that IRF5 may be an attractive new target for therapeutic intervention to control disease in SLE patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.