Abstract

The transcription factor interferon regulatory factor 3 (IRF-3) regulates genes in the innate immune response. IRF-3 is activated through phosphorylation by the kinases IKK epsilon and/or TBK1. Phosphorylation results in IRF-3 dimerization and removal of an autoinhibitory structure to allow interaction with the coactivators CBP/p300. The precise role of the different phosphorylation sites has remained controversial. Using purified proteins we show that TBK1 can directly phosphorylate full-length IRF-3 in vitro. Phosphorylation at residues in site 2 (Ser(396)-Ser(405)) alleviates autoinhibition to allow interaction with CBP (CREB-binding protein) and facilitates phosphorylation at site 1 (Ser(385) or Ser(386)). Phosphorylation at site 1 is, in turn, required for IRF-3 dimerization. The data support a two-step phosphorylation model for IRF-3 activation mediated by TBK1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.