Abstract

A major component of the protective antiviral host defense is contributed by the intracellular actions of the proteins encoded by interferon-stimulated genes (ISGs); among these are the interferon-induced proteins with tetratricopeptide repeats (IFITs), consisting of four members in human and three in mouse. IFIT proteins do not have any known enzyme activity. Instead, they inhibit virus replication by binding and regulating the functions of cellular and viral proteins and RNAs. Although all IFITs are comprised of multiple copies of the degenerate tetratricopeptide repeats, their distinct tertiary structures enable them to bind different partners and affect host-virus interactions differently. The recent use of Ifit knockout mouse models has revealed novel antiviral functions of these proteins and new insights into the specificities of ISG actions. This article focuses on human and murine IFIT1 and IFIT2 by reviewing their mechanisms of action, their critical roles in protecting mice from viral pathogenesis, and viral strategies to evade IFIT action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.