Abstract

Schwann cells differentiate in vivo in response to contact with axons, and cAMP simulates some of these aspects of differentiation in vitro, particularly morphologic changes and expression of certain phenotypic molecules. Unfractionated inflammatory cytokines inhibit cAMP-induced Schwann cell expression of galactolipids (Gal). We sought to identify which cytokines were responsible for this inhibition and to determine whether other phenotypic indicators of Schwann cell differentiation were also affected. Neonatal rat Schwann cells were incubated in vitro with 1 mM 8 Bromo cAMP (8 Br cAMP) with or without the addition of interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-2, IL-6, tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), or transforming growth factor-beta (TGF-beta). Cells were then examined for morphologic changes and for expression of surface Gal and low-affinity nerve growth factor receptor (NGFRp75), employing indirect immunofluorescence. 8 Br cAMP induced Schwann cell upregulation of Gal, downregulation of NGFRp75, and the cells became enlarged and somewhat amorphous and irregular in appearance. Cells treated with IFN-gamma or TNF-alpha alone were more bipolar and more evenly distributed on coverslips than were control cells, whereas TGF-beta alone induced elongated cells often in a swirling pattern. None of the cytokines alone induced upregulation of Gal or downregulation of NGFRp75. TNF-alpha, IFN-gamma, and TGF-beta inhibited the 8 Br cAMP-induced morphologic changes, as well as the upregulation of Gal and downregulation of NGFRp75. The other cytokines had no effects on Gal or NGFRp75 expression. Thus, these three cytokines, which are present in inflammatory lesions in the peripheral nervous system, are capable of inhibiting Schwann cell differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.