Abstract

A 39-nt DNA sequence, the interferon gamma (IFN-gamma) response region (GRR), is necessary for the IFN-gamma-induced transcription of the high-affinity Fc receptor for IgG (Fc gamma RI) and sufficient for the IFN-gamma-induced transcription of transfected plasmids. By using extracts from IFN-gamma-treated cells, three protein complexes will assemble in vitro on a 9-nt core region in the 3' domain of the GRR. The sequence of this core resembles the IFN-gamma-activated sequence (GAS) described for the GBP gene. Mutations in this GAS core region prevent complex assembly and result in the loss of IFN-gamma induction of reporter constructs containing the mutation. In addition to the GAS core region, a 5' region of the GRR is necessary for optimal IFN-gamma induction and for formation of one of the DNA-protein complexes. By antibody reactivity, we show that a 91-kDa protein, first identified as a component of ISGF3, the IFN-alpha-induced transcription complex, is present in at least two of the DNA-protein complexes. IFN-alpha can induce the formation of the faster-migrating 91-kDa protein-GAS complex but not the slower-migrating complex. Furthermore, IFN-alpha does not result in appreciable transcriptional activation of Fc gamma RI or constructs containing the GRR. Thus, these data demonstrate that the IFN-gamma-activated 91-kDa protein is required for IFN-gamma induction of Fc gamma RI and suggest that an additional complex may be required for optimal expression and specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.