Abstract

Immunosuppression developed by cancer cells remains a leading cause of treating failure of immunotherapies. This study aimed to explore the function of human endogenous retrovirus-H long terminal repeat-associating 2 (HHLA2), an immune checkpoint molecule from the B7 family, in the immune escape in hepatocellular carcinoma (HCC). Mouse models with primary HCC or with xenograft tumors were established. The portion of tumor-associated macrophages (TAMs) and the level of PD-L1 in the tumor tissues were examined. THP-1 cells were treated with PMA to obtain a macrophage-like phenotype. The PMA-treated THP-1 cells were co-cultured with the HCC cells in Transwell chambers to examine the function of HHLA2 in chemotactic migration and polarization of macrophages. HHLA2 expression was correlated with infiltration of immune cells, especially macrophages, and was linked to poor prognosis of patients with HCC. HHLA2 knockdown reduced incidence rate of primary HCC in mice. It also reduced tumor metastasis, the portion of M2 macrophages, and the expression of PD-L1 in primary and xenograft tumors. In vitro, HHLA2 upregulation increased expression of PD-L1 in HCC cells indirectly by inducing M2 polarization and chemotactic migration of macrophages. Interferon gamma (IFNG) enhanced expression of interferon regulatory factor 1 (IFR1) in HCC cells, and IFR1 bound to the promoter region of HHLA2 to activate HHLA2 expression. This study suggested that the IFNG/IFR1/HHLA2 axis in HCC induces M2 polarization and chemotactic migration of macrophages, which leads to immune escape and development of HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call