Abstract

The presence of protein kinase activity and its phosphorylated products has been demonstrated on the outer surface of the plasma membrane of endothelial cells. Extracellular phosphorylation was detected by incubation of primary endothelial cells (HUVEC's) and endothelial cell line EA.hy 926 with [gamma-32P]ATP. The reaction products were subjected to SDS/PAGE, autoradiography and scanning densitometry. Under the experimental conditions, five proteins with apparent molecular masses of 19, 23, 55, 88, and 110 kDa were prominently phosphorylated in both types of cells. Phosphorylation of the 19 kDa protein was the most rapid reaching maximum after 60 s and then the protein became dephosphorylated. Ecto-protein kinases responsible for the surface labeling of membrane proteins were characterized by using (a) protein kinase C inhibitors: K-252b, chelerythrine chloride, and [Ala113] myelin basic protein (104-118), (b) protein kinase A inhibitor Kemptide 8334, and (c) casein kinase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole (DRB). Stimulation of endothelial cells with tumor necrosis factor alpha (TNF alpha) and interferon gamma (IFN gamma) is associated with 20-80% reduction of extracellular phosphorylation of all membrane proteins. IFN gamma bound to membrane receptors becomes rapidly phosphorylated. Only in the case of IFN gamma it was associated with the appearance of a strongly phosphorylated band of 17 kDa corresponding to IFN gamma itself. Phosphorylation of this 17 kDa exogenous substrate was prevented by an ecto-kinase inhibitor K-252b. The existence of ecto-phosphoprotein phosphatase activity in endothelial cells was evidenced by testing the effect of microcystin LR--a membrane impermeable reagent that inhibits both PP-1 and PP-2a phosphoprotein phosphatases. The extent of phosphorylation of 19 kDa and 110 kDa phosphoproteins significantly increased in the presence of microcystin. Our results suggest the presence of at least two ecto-kinase activities on endothelial cells that may play a significant role(s) in the regulation of cytokines function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.