Abstract

CD14 is a 53-kd glycoprotein that is mainly expressed in myeloid cells and exists in two forms. The membrane-bound form represents the receptor for complexes of lipopolysaccharide (LPS) with LPS binding protein. The function and regulation of the soluble form are unknown. In the present study we investigated the release of soluble CD14 (sCD14) in cultures of human mononuclear leukocytes, elutriated monocytes, and monocyte-derived macrophages. The release of sCD14 into the medium of the cells cultured for 15 and 45 h was investigated in the absence or presence of selected cytokines. sCD14 release occurred constitutively and correlated with cell number. In monocytes differentiating into macrophages, cumulative release of sCD14 was linear from day 1 to day 7. Spontaneous sCD14 release after 15 h of culture (2 x 10(6) cells/ml) was higher in the supernatant from monocytes (314 +/- 58 ng/ml) than that from mononuclear leukocytes (68 +/- 10 ng/ml) and similar to that from macrophages (469 +/- 79 ng/ml). Cycloheximide and actinomycin D inhibited sCD14 release. Recombinant interferon-gamma (rIFN-gamma) and recombinant interleukin-4 (rIL-4) directly decreased sCD14 release in mononuclear leukocyte, monocyte, and macrophage cultures. rIL-2 and rIFN-alpha reduced sCD14 release into the supernatants of mononuclear leukocytes only. Use of anti-IFN-gamma antibodies indicated that the down-regulation of sCD14 release by rIL-2 and rIFN-alpha was partially due to induction of endogenous IFN-gamma. The down-regulation of sCD14 release by all four cytokines was both time and dose dependent. rIFN-gamma and rIL-4 added simultaneously had a synergistic effect on sCD14 down-regulation. In conclusion, sCD14 release may have an immunomodulatory role in circulating monocytes, is apparently not related to the process of macrophage differentiation, and is selectively down-regulated during an immune response when levels of IFN-gamma and IL-4 are high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.