Abstract
T helper (Th) 2-type cytokines play a dominant role in allergic inflammation. Accumulating evidence suggests that Th1-type cytokines antagonize Th2-type cytokine responses; however, recent studies demonstrate that Th1 cytokines might enhance Th2 immune responses. We examined whether interferon (IFN)-γ, a representative Th1 cytokine, modifies the effector functions of human eosinophils stimulated by granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-5. GM-CSF and IL-5 have significant functional homology, and contribute to the regulation of Th2 immunity. After the pretreatment of eosinophils with IFN-γ, GM-CSF- or IL-5-induced eosinophil functions were examined, including superoxide anion generation, degranulation, adhesion, expression of GM-CSF receptor (R), IL-5R, or CD11b, and phosphorylation of intracellular signaling molecules. Superoxide anion generation was measured using the cytochrome c reduction method. Degranulation and cell adhesion were evaluated based on eosinophil-derived neurotoxin (EDN) contents in supernatants or adherent cells. Phosphorylation of signaling molecules was analyzed using a multiplex beads array system. Preincubation with IFN-γ resulted in enhanced GM-CSF- or IL-5-induced superoxide anion generation and degranulation of human eosinophils, whereas stimulus-induced eosinophil adhesion was unaffected. In addition, IFN-γ did not influence the expression of GM-CSFR, IL-5R, and CD11b. Furthermore, IFN-γ upregulated GM-CSF- or IL-5-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and activating transcription factor (ATF)-2. Finally, we confirmed that MAPK inhibitors blocked the enhancement of stimuli-induced superoxide anion generation of IFN-γ treated eosinophils. In conclusion, IFN-γ might upregulate ERK, p38, or JNK/ATF-2 phosphorylation induced by GM-CSF or IL-5, leading to enhanced cytokine-induced eosinophil superoxide generation and degranulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.